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Abstract. Interactive visualization of high-performance computations is impor-
tant area in supercomputing. It assumes that visualization of results of computa-
tion is generated during computation process. However there is a problem: due
to overwhelming size of data to visualize, a visualization program should be it-
self parallel and executed on supercomputer. Beside that, such program should
allow to be changed dynamically, because visualization pipeline may change
due  to  user  steering  of  interactive  visualization.  Current  mainstream frame-
works for interaction with supercomputer programs assume usage of external
parallel programming methods. In current paper, an original parallel program-
ming model is suggested that have built-in capabilities for online visualization.
At basic level,  it is based on messages and reactions. At higher level it  uses
promises to simplify inter-operation of computation and visualization.

Keywords: Computational Model, Parallel Programming, Online Visualization,
Insitu Visualization.

1 Introduction

Interactive visualization of high-performance computations is covered by online
and insitu visualization areas. These are crucial  areas in modern supercomputing. In
some cases, it is impossible to achieve results of computation without them [1,3].

Online visualization is a process of interactive visualization of running computa-
tion [1]. Insitu visualization is a process of generating visual images of results during
computation [2]. Whereas both terms are different, they are interconnected and have
common aspect: use of supercomputer not only for computations, but also for visual-
ization purposes.

Due to the fact that supercomputer power is be used, visualization [pipeline] algo-
rithms have to be implemented in parallel form. Thus, to achieve online visualization
of supercomputing, following tasks have to be solved:

1. Provide a way of interaction of visualization part and computation part.
2. Provide a way of parallel programming of visualization algorithms.

The first task is solved using various approaches, for example see [2]. A most com-
mon approach is to provide some data transmission service, and a library for interact-
ing with it. Computing application is instrumented with calls for such library and thus
data is offloaded from application into visualization processing. Example projects are:
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ADIOS2, Ascent, Henson, Sensei, Damaris/Viz, Libsim, Paraview Catalyst, and oth-
ers (see reviews [3,4]). However, all of these projects doesn’t solve the second task –
they don’t provide any parallel programming models. 

It seems that this is philosophically correct – e. g. a recognized paradigm is that “a
given tool should solve single problem”. They instead provide channels of data trans-
mission and model of interaction of such channels. They moreover sometimes provide
some kind of data endpoints compatible with visualization systems which are already
parallelized. For example ADIOS2 may be interconnected with Paraview parallel vi-
sualizer using Paraview Catalyst / Fides technology. 

By the way, this leads to very interesting configuration: a visualization pipeline in
Paraview might be described as a set of interconnected actors both in Python code and
in graphical user interface. This is on one hand is brilliant idea – because it is easily
understandable by human. On other hand it leads to serious problems in computations
balancing, due to design of Paraview’s implementation.

However, there are not many such parallel visualization systems: Paraview, Visit,
ScientificView, and it seems no more. In any case, even if there will exist enough
quantity of them, the scientific progress should not be stopped and new ones should
emerge.

In the current paper, the author suggest single solution that solves both stated tasks.
The solution is proposed in a form of computational model. It may be used for inter -
action with HPC programs and for programming parallel algorithms of visualization.

The current paper is devoted to the main part of software technology – the model.
It called main because other parts, e.g. implementation, depends on it. The suggested
model, in turn, is not a ready-to-run software. It may be implemented using various
programming technologies with some kind of model variations suitable for that tech-
nologies.  But before turning a model into technology,  we should be sure that  the
model is effective. So the global plan is to suggest the model, to play with it using ex-
perimental implementations, and finally create a technology.

It might be philosophically incorrect that single tool solves two problems, as in our
case. But this fact might be corrected if a view on problem environment will drasti -
cally change in  future. At least, it is not looking bad to have a parallel computational
technology that may interoperate with other computational technologies.

The structure of this paper is as follows. In Section 2, the problem statement is de-
fined. Sections 3, 4 and 5 propose a designed model for parallel programming. Sec-
tion 6 highlights prototype implementation details. Section 7 suggest an experimental
application of the model for parallel rendering task. 

2 Problem statement

To going further, we should define what we consider as a typical parallel computa-
tional program. It will give us a picture what kind of software in which environment
we should operate with for online visualization. 
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2.1 Formalization of online visualization
Without loss of generality,  we  fix the scope of the developed online visualization
model in the following formulation.

There is a set of information entities  {D}, each divided into parts in the domain
sense (so called  domain decomposition), e.g. each  D = {di}. For example, one may
consider a structured grid D which is decomposed into parts {di}, as on fig. 1. These
parts di  are such that they fit into the memory of the computation process that calcu-
lates associated part. 

Fig. 1. A distribution of structured data on computation cores. Image courtesy of [5].

The scientific simulation is implemented in the form of a set of computation pro-
cesses (processes of the operating system and processes on accelerators) located on a
set of hardware nodes. These processes interact as necessary with each other and with
external sources for the exchange of input, intermediate, edge, and output values. The
set of  computation  processes and the structure of their interaction can change over
time, as well as the set of computed entities {D}. 

A significant feature of the content of entities D is that this content changes over
time.  Thus,  entity  D is  a  "living"  informational  "matter",  its  life  (evolution)  is  a
process of change of it’s content in the course of the computational process. 

The variability of the contents of D is also due to the limited memory of the hard-
ware nodes. As a rule, only the contents of the previous and current iteration step of
the computational process are stored in memory. Although, in general, computational
processes can store a larger number of steps in node memory (for example also using
disks). But this does not change the nature of the entities {D} - they evolve in time,
and a limited trace of states or images of states from previous iterations follows them.

At the same time, in practice, the structure of the partition of D does not usually
change during the calculation, although this is theoretically possible. 

The task of online visualization is to build numerical and visual images of entities
{D} and transfer them to the destination, build visual images of the composition and
structure  of  computational  processes,  supply control  signals  to computational  pro-

https://doi.org/10.14529/pct2022
https://summerofhpc.prace-ri.eu/can-you-briefly-explain-the-domain-decomposition-method/
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cesses, and possibly manage their composition and structure (that is, control the cal-
culation process).

Using to this definition, insitu visualization may be considered as a specific part
of online visualization. It doesn’t need interactivity and concentrates on generating
images using HPC power. Also,  parallel rendering and  remote visualization  also
may be considered as areas used by online visualization: they fit naturally in the phe-
nomenon.

Now we are ready to provide problem statement: create a technology (a model, and
it’s implementation) that solves stated task of online visualization.

3 Calculation model. Basic level

A practical computational model is proposed, which can be programmed and which is
expected to implement all the necessary features to solve tasks of online visualization.
The model consists of three levels. This section deals with the first, basic level. Then
in ongoing sections two additional levels will be described.

The  model  starts  with  the  concept  of  a  message.  A message  is  a  triple  
(label,dictionary,payload) , where

 label –  is a message label,
 dictionary – is a key-value dictionary,
 payload – binary large objects associated with message.

The message label may be different, which will be discussed later. A dictionary is
understood in the usual programmer sense, that is, a set {(key, value)} with the re-
striction that in each dictionary the key is unique (that is, exactly one value corre-
sponds to the key in the dictionary). The payload is the additional binary information
associated with the message. Its structure and meaning are determined by the interact-
ing parties. The payload is taken out of the dictionary for technical purposes – so that
the dictionary takes up relatively little memory; while a payload can be relatively
large.

A system is a computation that performs certain actions according to a model. The
interaction of different entities is implied by the system.

The message can be "sent" to the system (by any party, without restrictions). The
system processes incoming messages using the so-called reactions.  Reaction is the
pair of (criteria, action) , where

 criteria – triggering criteria,
 action – action to execute when the reaction triggered,

Any party may register reactions within the system. When a new message is sent,
actions of all reactions whose criteria matches a message are executed, in order as
they registered. 

Additionally, any action is able to cancel further processing of other  actions.  Ac-
tions are assumed to be computationally simple and limited in execution time. It is
important to note that actions can, in particular, a) test additional conditions (inex-
pressible in criteria), b) send new messages to the system, c) register additional reac-
tions.
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The list of registered reactions can change dynamically over time. 
Reactions are considered to have no shared state between each other. This design

decision allows to execute them (e.g. their actions) without any synchronization, in
parallel for each arriving message. The only dependence between reactions is when
single message is processed, as actions are processed in order (see above).

A note about the reaction criteria.  The criteria used by model  might be different.
The main demand for criteria is that is should allow to identify reactions matching in-
coming message with little computational complexity.

Without loss of generality, the current paper uses the following mechanism of cri-
terion: the message label and reaction criterion are strings. If message label equals to
criterion, then (and only then) we assume that criterion matches that message.

The reaction definition operates criteria, while here we denoted single criterion. It
is  assumed that criteria is constructed as a list of criterion. When message matches
any of criterion from list in reaction, the message is considered matched to that reac-
tion. Thus, we apply OR logical operation. This design decision is made by consider-
ing that it is ergonomic to have single reaction to match different kinds of messages.

4  Calculation model. Service level

The basic level of our model does not allow solving the entire range of tasks required
to solve online visualization problems. However, this level is extensible, it allows to
add additional features to it. It is suggested to add these new features using the fol -
lowing concept of services.

A service is a set of reactions registered within the system, and possibly additional
software processes and other components. Together, they implement the functionality
of a service.

Interaction with services is expected to be done primarily through messages in-
troduced at basic level of the model. This design decision allows other parties to hook
into such communications by placing additional reactions, which is considered to add
flexibility to the computation.. But there is no restriction that interaction is allowed
only through messages. One may implement custom API of any service if required.

The list of services can be updated as needed. To date, the practical need for the
following services has been identified.

4.1 Service for managing reactions via messages.

It was found convenient to manage list of reactions using messages. This allows to
use only message sending API to interact with the system. The service adds the reac -
tion to the system that reacts to following message:

 label: “manage_reactions”
 cmd:"add" | "update" | set | "remove"
 reaction_id: string
 criterion: string, a criterion of controlled reaction
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 action: string, the action code of the controlled reaction.
When message of such kind arrives, the service manages the list of reactions regis-

tered. The service assumes that each reaction must be associated with a unique identi-
fier. This is due to the need to distinguish between reactions. 

The action code of an action  is  assumed to be described in a programming lan-
guage  that  the  system  supports.  Since  messages  are  supposed  to  be  transmitted
through various information transfer protocols, this code is assumed to be a string. In
the future, if necessary, this restriction can be relaxed (for example via setenv, below).

4.2 Query service

A query is a special kind of reaction, which differs in that the action of such reaction
is executed on client that issued query. As a consequence, action may directly interact
with client program. Additionally, query may have a counter N which means that ac-
tion should be executed no more than N times. Queries are useful for detecting mes-
sages of interest and implementing various logic. For example, queries are used by
following runner service to load tasks to be executed.

Query service might be implemented using ordinal reaction, whose action send sig-
nals to client when message of interest is detected using some network protocol.

4.3 Task service

Task service is designed to execute arbitrary tasks using automatic balancing. Clients
schedules tasks using messages. They are then distributed to dedicated runner nodes,
which in turn execute these tasks and respond with results. These allows to describe
arbitrary algorithm using steps that are executed in parallel, for example on nodes of
supercomputer.

A task is scheduled using message of following signature:
 label: “exec-request”
 code: operation code
 args: a list of operands for operations
 result-label: the label for message with results of execution.

Here operation code is a code operation to be performed. Args is a list of operands
that may contain constants, references to payloads (see payload service), and other
values recognized by the system. They will be passed to operation. After execution of
operation, it’s result is sent using message with label specified by  result-label. This
allows client to generate unique label, issue tasks, and catch results of those tasks.

Operation code might specify function in some programming language, or might
specify a function defined in operations table. In latter case, such a table might be
configured using messages of following signature:

 label: “setenv”
 name: string
 value: programming code.

Here name corresponds to operation code, and value contains code of operation in
some programming language. It is considered that this code defines a function which
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will be called when operation is called. Additionally, it might be useful to consider
different programming codes for single operation, corresponding for different execu-
tion environments. For example, one may specify operation code both for CPU and
for GPU. The system then will be able to choose appropriate code according to actual
environment.

A note on “needs”. During experimentation it was noted that it is inefficient to exe-
cute some  tasks from scratch. Sometimes, there are repetitive subtasks occurred re-
quired by various tasks. An example of such subtask is to load some programming li-
brary, configure a GPU, and so on. It was found efficient to cache results of such sub-
tasks and reuse them between different tasks. Thus a concept of needs was appeared.

A need  is state of memory and hardware that is required by tasks to perform. A
same need might be required by different tasks, and might be reused. A runner, before
running operation of a tasks, prepares all needs required by that tasks. If need is al-
ready prepared (e.g. its result is in cache), runner just touches it’s access timestamp.

Needs should be identifiable, because caching algorithm should be able to distin-
guish them and associate with incoming tasks. It seems this might be done by some
kind of a function from list of arguments of a need to a string.

As it noted, a need corresponds to some state of memory and hardware. This means
that need is tied to runner, and different runners prepare their own copies of needs.

Needs required for a task is natural to enlist in arg field of task description, speci-
fied in exec-request message. It is then natural to pass results of needs to operation in
it’s arguments. Thus, a task in our model transforms from single operation into opera-
tion and needs required for that operation.

A note on resources limits. Both operations and needs require computing resources
to be performed: for example, some amount of memory, hardware, so on. The actual
amount of such resources on available supercomputer nodes is limited. So the imple-
mentation of the computational model should consider those limits and and correlate
them with task’s  and  need’s  requirements.  This  is  also  important  for  maintaining
cache of prepared needs to keep it within available limits.

4.4 Payload service

Payloads are binary large byte objects (blobs). They are required so interacting parties
may interchange with actual  data of computed entities.  Payloads,  due to the large
amount of required memory, are taken out of the main system components. This can
be  implemented  by creating a special service that would store payloads and  present
them as needed. This significantly “unloads” the main system. The idea to work with
payloads in a separate service was suggested earlier by M. O. Bakhterev [6].

If one want to send a message with payloads, it should go through following steps.
1. Upload payloads to the payload service.  As a reply, the service generates

unique URL for each stored payload. This URL might be used later by any
other participants to download payload from the service.
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2. Put the received URLs of payloads into payload field of the message dictio-
nary, and then send the message to the system. 

Implementation of payload service should consider following aspects:
 “Uploading”  data  to  payload service  without  actual  movement  of  data  in

memory. This might be done using shared memory concept, where payload
process gains ownership of memory where payload is stored.

 “Uploading” data to payload located in GPU (or other accelerators) memory
without actual movement of the data. That is, client should be able to transfer
handlers of GPU buffers to the service.

 Same things should be done for downloads: client should be able to access
payload bytes without data movements.

 Offload payloads from RAM to persistent storage when it is still required but
not accessed.

 Cleanup of payloads that are no longer required.
The latter is sophisticated theme and might require additional actions from client to

take care of some kind of payload usage counters. In ideal, specific cases, it probably
might be done automatically, like some kind of garbage collection. Such automatic
cleanup probably will be simplified by tracking promises (see below) somehow.

Additionally,  payloads service might be better interconnected with task service.
For example, a runner may download payloads required for task scheduled onto that
runner, while executing other task. It also may upload payloads of task results while
executing other task.

5  Calculation model. Promise level

Preliminary usage of the model shown that is is not ergonomic for final applications.
It is possible to express a variety of computations using it (probably a full variety, in a
sense of Turing machine). But it is not convenient to express them only in terms of
messages, reactions, and tasks. It was determined that more high-level primitives are
required to make application code shorter and clearly to human mind.

One known primitive is a  promise. It was developed by many researchers almost
50 years ago, see for example [7]. Our practice had shown that promises bring some
additional level of clarity and adds compactness to parallel application codes, see sec-
tion “Experiment”.

A promise is an object that corresponds to data that will be calculated sometime. A
promise can be created in one process, fulfilled (that is, filled with data) in another,
and respond to fulfillment in the third. 

The convenience of promises lies in the fact that they can be operated on at any
time, even before the results of calculations are received. This makes it possible to de-
scribe parallel data processing algorithms using sequential codes, see example in sec-
tion 6.

Promises can be created explicitly or implicitly. One of the convenient methods of
implicitly creating and using promises is linking them with asynchronous task execu-
tion (which we employ in section Task service).

https://en.wikipedia.org/wiki/Futures_and_promises
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To do this, we extend our model with the following:
 Each task submission is associated with a promise object. Thus client sched-

uling a task gains a promise object of that task.
 Allow to specify promises in arguments of scheduled tasks.

In case if task have one or more promises in arguments,  its  calculation is started
only when all such promises are fulfilled. Corresponding arguments are substituted by
values of that promises. Thus task operation works as before, using arguments as val-
ues and don’t boring that they were generated by other tasks.

This looks like Lambda calculus, with little difference that arguments for function
application are calculated asynchronously and parallel. With promises, we implement
applicative-order evaluation (and not normal-order, or lazy evaluation).

Explicit promises. Another way of creating promises is to create them explicitly. We
add following operations into model for that:

 create_promises(n) → list of p – creates a list of n promises
 fulfill(p,data) –  fulfills promise p with data.

Promises created this way might also be used in arguments of tasks, same as prom-
ises created implicitly. So system will wait their fulfillment before running tasks. 

It is also might be useful to pass promises to tasks just as objects, without applying
“wait and substitute” logic. Also, promises will be useful to send in messages, so their
serialization of promise objects should be considered.

Usage of promises. Explicit promises trivialize connection of the model to scientific
simulations. We consider the following scenario. As it stated before, each iteration of
simulation computes some entity D that has domain decomposition {di}. Let each iter-
ation of simulation have associated structure S={pi} of promises corresponding to that
domain decomposition.  Each computational process of simulation fulfills promises
which correspond to parts that this process computes. Simulation sends S to the sys-
tem. Visualization algorithms get S and schedule tasks based on promises from S, re-
quired to achieve target visualizations.

This logic is modular. Each visualization algorithm may be expressed then as a se-
quential function from S to R, where S is a structure of promises describing source
entity and R is a structure of promises describing result of algorithm application. 

Such algorithm implementation considered as following. It gets  S in arguments,
then schedules a set of tasks to task service, passing promises from S as arguments for
that tasks. Because the model have feature to get promise for each scheduled task, al-
gorithm may then pass such promises to additional tasks or sub-algorithms, so on. Fi-
nally, it achieve promises for R and returns it.

Above-mentioned visualization algorithms are functions, however online visualiza-
tion is a process (because it visualizes ongoing computations). To create a process of
visualization, we consider following: add a reaction for each new incoming S, issued
by simulation, and pass execution to visualization function with that  S as argument.
Thus we will achieve that visualization will be built as simulation goes on.

http://theory.stanford.edu/~rvg/process.html
https://en.wikipedia.org/wiki/Process_calculus
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-10.html#%25_sec_1.1.5
https://en.wikipedia.org/wiki/Lambda_calculus
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6  Prototype implementation

The author develops implementation of suggested model. It uses Javascript language
and works within NodeJs and browsers, and uses HTTP and Websocket protocols for
inter-node communications. Following some ideas achieved during implementation of
the model are highlighted.

Client library. It was found convenient to use client library for model clients to ac-
cess  the  system API.  The  library  provides  entry  points  for  all  services  described
above:

 msg(m)  –  send  message  m to  the  system.  The  m is  considered  to  be
javascript object with at least label field.

 reaction( criteria, action ) – register a reaction within the system, which will
call action for every message that meets criteria. The action is encoded as a
string with a function in Javascript language. 

 query(criteria,N,callback) – put a query to the system which will call  call-
back for at most N times.

 exec( opcode, args ) – schedule task defined by (opcode,args) and return it’s
promise.

 setenv( name, value ) – define operation body where name is operation code
and value is body of operation on some language

 promise(N) and fulfill(p) – explicitly creates N promises and fulfills given
promise. Currently not implemented yet.

Thus all clients load the library and interacts with the system using calls to it.

Distributing reactions. First implementations were sending messages to some central
master node which role was to execute all registered reactions. It was occurred to be
non effective. Then a new approach was developed with idea to distribute reactions to
clients. When client “sends” a message to the system, it actually doesn’t send it, but
executes actions of registered reactions corresponding to that message. This approach
seems to be much more effective, because actions are executed concurrently, on the
client processes. Central node is still required but it’s role is to manage list of regis-
tered reactions and send updates on that list to active clients. Probably such server
might be replaced later with some peering mechanisms.

Query service. As reactions are executed on clients, query service was implemented
by the following.  When some client  (query  owner)  issues  a  query,  a  local  HTTP
server is started up inside that client’s process. It provides endpoint  URL which is
ready to receive incoming messages asynchronously. Then a  new  reaction is  regis-
tered within the system. It’s criteria is a  criteria of query, and it’s action is to send
HTTP request with found message to endpoint URL of query owner. Thus when some
party “sends” message to the system that is interesting to the query, it actually sends
that message directly to the query owner.
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Task service.  Current  implementation introduces concept  of runner processes  and
single  runner-manager process. The manager queries all upcoming scheduled tasks
by placing query to messages with exec-request label. Runners advertise them to the
manager using special messages with  runner-info label. The manager continuously
executes assignment algorithm to decide which tasks on which runners to perform. It
then assigns tasks to runners. When runner achieves a task, it executes it and sends re-
sults to the manager and to the client of the task.

When assigning tasks to runners,  the manager considers  needs that already pre-
pared on that runner, solving the assignment problem with some kind of heuristics. 

Additionally, task service is used to track all promises within the system.

Payload service. It is implemented as a set of HTTP servers, which are started on
each hardware node participating in computation. When client wants to submit pay-
load, it  communicates with payload service component located on  the same node
where client is located (e.g. localhost). The unique URL of each stored payload is
considered to be generated using local counter on the  node, and network address of
the node. This assumes that all nodes have unique addresses and interconnected, but it
seems to be common practice in supercomputing.

Thus, when client sends message with payload, actual payload bytes are kept on
the node of the client. It might be transmitted over network later, if some other client
would decide to download that payload.

In future, implementation of payload service is planned to consider shared memory
and GPU buffers to avoid unnecessary transferring of data.

Connecting to other platforms. In spite of  current implementation uses Javascript
language, it might be used within other platforms. First of all the machine-code plat-
form is considered (C++, Fortran, so on) because it is most often used in scientific
computations. Two ideas are considered for connecting to other platforms:

 Middleware nodes.
 Specify reaction’s actions in different languages.

Middleware node is a node that on one hand interacts with the system, and on other
provides special API for it’s clients on other platforms. For example, it might be inter-
esting to provide API based on some kind of FUSE file systems to interact with the
model. In that idea, writing to file of some specific path will issue the message, while
reading some file leads to performing a query.

Another  option  is  to  allow specifying  reaction’s  action  in  language  other  than
Javascript. It might be done be leveraging same approach as used in task service, e.g.
by forming a table of actions using setenv messages. This will allow client library to
download and execute programming codes of actions appropriate to the platform of
the client.

https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://www.usenix.org/publications/loginonline/transcending-posix-end-era
https://en.wikipedia.org/wiki/Assignment_problem
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7 Example application

In this section test the created model and implementation with the task of parallel in-
teractive rendering of 109 cells (in form of voxels). This task is a simplified version of
comparison test of Paravew and ScientificView visualization systems given in [5].
The simplification is that cells here have no associated values (e.g no fields – just ge-
ometry). Cells are given by their coordinates  (x,y,z)  and all have same constant size
(dx,dy,dz). The code of solution is provided on fig. 2. 
    
let K = 50

let filenames = ["1.dat","2.dat",…,K+".dat"]

let blocks = filenames.map( __load )

rapi.query( "render",(m) => {

 let images = blocks.map( b =>

 __render(b,m.camera_position,m.w,m.h) )

 let final_image = recursive_merge( images ) 

 rapi.msg( {label:"image", final_image } )

})

function __load( filepath ) {

  return rapi.exec( arg => 

      read_file_as_floats(arg.filepath),{filepath} )

}

function __render( block, camera_position, w, h ) {

  return rapi.exec( arg =>  arg.render_fn(arg.camera_position), 

      {render_fn: {code: "cell_render_func", need: true, 

                   arg: {block,w,h}}})

}

function recursive_merge( images ) {

  if (images.length <= 1) return images[0]

  let acc = []; for (let i=0; i<images.length; i+=2 )

     acc.push( __merge_2( images[i], images[i+1] ) )

  return recursive_merge( acc )

}

function __merge_2( image1, image2 ) {

  return rapi.exec( arg =>  

    merge_2_zbuf( arg.image1, arg.image2 ), { image1, image2 })

}

Fig. 2. Source code of interactive parallel rendering of cells (javascript). The system’s API is
provided via rapi variable. The code of operation cell_render_func is big and omitted for clar-
ity, also merge_2_zbuf is simple and omitted too.

https://doi.org/10.14529/pct2022
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It is considered that cells that we have to render are distributed into  K parts and
stored in files named k.dat. The following is going on in the code:

1. The code starts with scheduling load task for each block. As a result, an ar-
ray of promises of loaded blocks is stored in blocks variable.

2. The code issues a query on message with render label. It is assumed that vi-
sualization frontend issues such messages. 

3. When render message issued, an query callback is called and it starts parallel
rendering process by  calling __render function for each part. The __render
schedules render task to the system for parallel execution.  As a result, an ar -
ray  of  promises  is  achieved  and  stored  into  images  local  variable.  These
promises are considered to be fulfilled to images of rendered parts in the
form (color-buffer,z-buffer), e.g. having both color and depth data.

4. Images promises  are  passed  to  recursive_merge  algorithm which  in  turn
schedules tasks to join images using sort-last method.

5. Final image is sent with message labeled “final_image” which is queried and
displayed by visualization frontend.

Fig. 3 (left) displays sample output of developed application.

Fig. 2. Left: visual result of interactive parallel rendering of cells. A cube of size 1 is split into
50 parts having 109 cells in total. User may rotate view angle and change camera position using
mouse. After camera position change the cube gets re-rendered. Currently it gets around 5..20
seconds to complete re-render  using 8..50 runners. Right: visual debugging of cells parallel
rendering algorithm. Time goes from up to down. Blue lines are tasks of loading  blocks, red
lines are block rendering tasks. White dots are image merge tasks (actually they are lines too
but perform to fast so appear as dots). Task’s x location in a view corresponds it’s block num-
ber. Data dependencies between tasks is shown using cyan lines. There are 8 runners shown
performing tasks, on bottom plane. Animation is available: youtu.be/XnV3l8hw8QE.

To debug parallel applications implemented within the suggested model, a visual-
ization tool was created. It catches messages that schedule tasks to the system, and
also messages when task is assigned to a runner and when task is completed. Then it
visualizes ongoing processes using synthetic view in 3D space. On fig. 3 (right) an
output of such view is presented. It may be considered as online visualization of a
parallel algorithm structure.

https://youtu.be/XnV3l8hw8QE
https://doi.org/10.14529/pct2022
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8 Conclusion

In the paper a specialized model for parallel computations is suggested. It is special-
ized for online visualization tasks, which assumes that visualization of computation is
made during that computation. These tasks demand an ability for inter-operation with
working scientific simulation codes. Simulation codes need to pass data to visualiza-
tion, and to receive commands from it. 

To pass data from simulation to visualization, a message sending operation is sug-
gested. To receive commands, a message query operation is suggested. Additionally a
higher level mechanism of promises is suggested to simplify programming of inter-
operation between simulation and visualization.

A proof-of-concept  implementation  of  the  suggested  model  is  presented.  Some
practical ideas of implementation are highlighted.  An example application that uses
the suggested model is presented – a parallel rendering of cells.  It is not actually an
online visualization application, but instead an interactive visualization tool. Despite
of that it served as a very productive basis for understanding the needs of the model
and it’s implementation.

A new computational model is suggested despite that there are already exist a lot.
Starting for example from MPI and passing to Template Task Graph technology [8]
(overview video). Author neglects to use MPI because it has fixed number of partici-
pating processes, due to it is effective for online visualization to change number of
computing nodes at  runtime according to current  demands. In  contrast,  task-based
parallel programming technologies provides this and other benefits, but their model is
often non-clear.

Author tries to keep the model as much as close to computation basics, keeping out
of non-substantial entities. Such basics are seems achieved for example by C.A.R.
Hoare’s CSP [9] and Yuri Gurevich’s AST [10] models.

In current paper, nothing novel of primitives is added:
 Sending and reacting to messages is something from basis of computing.
 Promises are developed in 1970th.
 Tasks looks like asynchronous remote-procedure calls to a worker pool.

What is new is the implementation nuances and details of composition.
 Sending messages to a common bus instead of sending them directly to tar-

get peer. This allows any other peer to hook into “communications” and add
additional logic. It looks like system-wide mixin  s   used to influence process-
ing logic on multiple nodes at runtime.

 A method of communication between simulation and visualization consisting
of transferring structures of promises. On each computational iteration, simu-
lation sends  meta-information about  data  being  computed,  represented  as
structure of promises according to domain decomposition. This structure or it
parts or individual promises then may be easily distributed to various tasks
of visualization. This differs from existing practice of establishing communi-
cation channels which are then tied to “reader” processes (as in ADIOS2).

The author thanks colleagues for discussions on the presented work.

https://github.com/omlins/adios2-tutorial
https://en.wikipedia.org/wiki/Mixin
https://www.youtube.com/watch?v=BOavGaSviqQ
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